Deduction and Search Strategies for Regular Multiple-Valued Logics
نویسندگان
چکیده
The inference rule !-resolution was introduced in [27] as a technique for developing an SLD-style query answering procedure for the logic programming subset of annotated logic. The inference rule requires that the lattice of truth values be ordinary. In this paper, it is proved that all complete distributive lattices are ordinary. Properties of !-resolution in the general theorem proving setting are explored, including the completeness of a variety of restrictions. It is shown that the pruning effects of classical restriction strategies (for example, ordering and the linear restriction) can be enhanced with the !-operator. Two macro inference rules, annotated hyperresolution and annotated hypertableaux, both of which can also be enhanced with the !-operator, are developed for annotated logics.
منابع مشابه
Yaroslav Petrukhin NATURAL DEDUCTION FOR THREE - VALUED REGULAR LOGICS
In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S. C. Kleene’s logics and two intermediate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. T...
متن کاملLabelled Deduction over Algebras of Truth-Values
We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: ...
متن کاملTruth-values as Labels: A General Recipe for Labelled Deduction
We introduce a general recipe for presenting non-classical logics in a modular and uniform way as labelled deduction systems. Our recipe is based on a labelling mechanism where labels are general entities that are present, in one way or another, in all logics, namely truth-values. More specifically, the main idea underlying our approach is the use of algebras of truth-values, whose operators re...
متن کاملSequent of Relations Calculi: A Framework for Analytic Deduction in Many-Valued Logics
We present a general framework that allows to construct systematically analytic calculi for a large family of (propositional) many-valued logics — called projective logics — characterized by a special format of their semantics. All finite-valued logics as well as infinite-valued Gödel logic are projective. As a case-study, sequent of relations calculi for Gödel logics are derived. A comparison ...
متن کاملSystematic Construction of Natural Deduction Systems for Many-Valued Logics
A construction principle for natural deduction systems for arbitrary finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness and norm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Multiple-Valued Logic and Soft Computing
دوره 11 شماره
صفحات -
تاریخ انتشار 2005